Единая коллекция
Цифровых образовательных ресурсов

Тематический рубрикатор

Элементы логики, комбинаторики, статистики и теории вероятностей

Найдено документов - 1007
21. Арнольд В.И. - Динамика, статистика и проективная геометрия полей Галуа

В этой книге, являющейся записью прочитанной автором 13 ноября 2004 года лекции для школьников Малого мехмата МГУ, рассказано об удивительных недавно открытых связях алгебраической теории полей Галуа с теорией динамических систем, хаоса и статистики с одной стороны и с геометрией проективных структур на множествах из конечного числа точек - с другой. Большая часть этих новых открытий обнаружена экспериментальным путём, а возникшие при этом гипотезы во многих случаях ещё не доказаны, хотя и их понимание, и их эмпирическая проверка легко доступны школьникам, особенно владеющим компьютером. Ждут пытливых исследователей и многие теоретические вопросы - например, напрашивающийся вопрос о том, чем выделяется подгруппа проективных перестановок в полной группе всех перестановок конечного множества, каковы специальные геометрические свойства проективных перестановок дюжины точек, отличающие эти перестановки от непроективных.


26. Вавилов В.В., Устинов А.В. - Многоугольники на решётках

Решетки на плоскости являются тем замечательным мостом (с достаточно интенсивным двусторонним движением), который позволяет задачи алгебры, анализа, теории чисел переводить на геометрический язык и~наоборот - задачи дискретной геометрии облекать в аналитическую форму. Основу книги составляют вопросы, связанные с возможностью расположения на решетках правильных или "полуправильных" многоугольников (только с равными сторонами или только с равными углами), формулой Пика для площади многоугольника на решетке и ее тесной связью с комбинаторной формулой Эйлера. Книга написана на основе лекций, которые один из авторов читал в школе им. А.Н.Колмогорова при МГУ, на Малом мехмате МГУ, а также для студентов, аспирантов и преподавателей вузов как у нас в стране, так и за рубежом.


38. Владимир Игоревич Арнольд - "Тригонометрические многочлены Морса и шестнадцатая проблема Гильберта"

Президент Московского математического общества академик РАН Владимир Игоревич Арнольд
VI Летняя школа "СОВРЕМЕННАЯ МАТЕМАТИКА" (Дубна, 25 июля 2006 года)

Топологическая классификация вещественных многочленов, даже имеющих невырожденные критические точки и не кратные критические значения, неизвестна уже для многочленов степени 4 от двух переменных.
Гладкие функции на двумерной сфере с таким же числом критических точек и значений образуют 17746 топологических классов (когда критических значений 9). Но сколько из них реализуется многочленами степени 4, неизвестно (предположительно штук 200).
В лекциях будет обсуждаться в основном аналогичная классификация тригонометрических многочленов и функций Морса на двумерном торе. Здесь число классов функций оказывается бесконечным, а тригонометрическими многочленами (соответствующей степени) реализуется лишь конечное число классов.


Всего документов: 1007

Показывать ресурсов на странице 

Упорядочить по 


Поддержка ресурса