Единая коллекция
Цифровых образовательных ресурсов

Тематический рубрикатор

Природные и синтетические полимеры

Найдено документов - 33
5. Взят новый рубеж в молекулярной биологии

Сегодня ученые с легкостью оперируют последовательностями нуклеотидов в ДНК и РНК. Полностью прочитаны последовательности в геноме множества простейших и животных, включая человека. А в 1962 году, когда американский биохимик Р.У.Холли вместе со своими сотрудниками впервые расшифровал последовательность нуклеотидов в транспортной РНК, это стало настоящей сенсацией. Объектом исследования ученых была одна из т-РНК, которая, присоединяя аминокислоту аланин, переносит ее в рибосому для включения в синтезируемый белок; ее называют аланиновой т-РНК. Важность открытия даже трудно было оценить. Ведь транспортные РНК играют чрезвычайно важную роль в синтезе белка, переводя четырехбуквенный код нуклеиновой кислоты на двадцатибуквенный язык белка. Ведь для строительства белков организм использует всего двадцать аминокислот. О том, как было сделано это открытие, рассказано в статье.


8. Золотое руно полимеров

Сегодня невозможно представить нашу жизнь без химических волокон. Они повсюду - в нашей одежде, в декоративных тканях и строительных материалах, в спортивном и туристическом инвентаре, в самолетах и приборах? Трудно поверить, что еще 50 лет назад об этих волокнах мало что знали. Их эпоха началась в начале 60-х годов. Тогда химическая промышленность в разных странах мира, в том числе и в нашей стране, приступила к выпуску первых волокон, изобретенных химиками - капрону, найлону и лавсану. Кстати, вклад российских химиков был велик. Достаточно сказать, что знаменитое волокно лавсан называется так в честь своих изобретателей - ЛАборатории Высокомолекулярных Соединения Академии Наук. Из заглавных букв и складывается слово "лавсан". Какие задачи ставили перед собой разработчики и производители химических волокон в начале 60-х годов, когда эпоха волокон только начиналась? Какие волокна им хотелось получить? Прочитайте об этом в статье З.А.Роговина "Золотое руно полимеров"


10. Изучение памяти макромолекул: путь к управлению структурой полимеров

Полимерные молекулы обладают индивидуальностью, то есть тем набором свойств, по которым одну молекулу можно отличить от другой. Например, при одинаковом химическом составе молекулы могут отличаться друг от друга длиной цепи или структурой составляющих звеньев - мономеров. Звенья и цепи могут по-разному чередоваться. Чем больше их число и чем разнообразнее их структурный набор, тем больше возникает возможностей для индивидуализации, или специализации, молекул. Различные комбинации смежных звеньев представляют собой знаки определенного кода, подобно тому, как сочетание точек и тире в азбуке Морзе изображают буквы алфавита. Иными словами, полимерная цепочка несет на себе определенную информацию уже по одной той причине, что она полимерная, то есть состоит из многих сотен и тысяч звеньев. Аналогично устроен и генетический код, который несет биополимерная молекула ДНК, состоящая всего из четырех типов звеньев. Выходит, что синтез макромолекул есть процесс накопления или передачи информации. А это значит, что получение изделий из синтезированного полимера должно обязательно основываться на той информации, которая уже была произведена. И тут возникает роковой вопрос: а умеем ли мы эту первоначальную информацию читать? Если не умеем, то технология получения изделий из полимеров может стать дезинформацией и получением продукта плохого качества.


14. Кураре

Химики занимаются не только синтезом новых, не существующих в природе веществ. Они тщательно исследуют и те, что создала сама природа. К их числу, в первую очередь, относятся природные яды. Почему в первую? Во-первых, потому что невозможно найти противоядие, не зная состав вещества. А во-вторых, как правило, любой яд в малой дозе становится лекарством. К числу таких веществ, несомненно, относится знаменитый яд кураре. Южноамериканский индейцы использовали кураре при исполнении религиозных обрядов, на охоте и на войне. Обычно они смазывали ядом наконечники боевых стрел, которые валили зверя и противника наповал. После долгих и настойчивых поисков европейцам удалось выяснить, что основным смертоносным началом туземного яда служат соки южноамериканских растений - стрихинос и хондодендрон. Но прошли еще столетия, прежде чем ученые выяснили, как этот яд действует, как он устроен и как можно использовать его в медицине. Структурные формулы действующих веществ яда теперь известны.


15. Латекс - каучуковое молоко

Латекс - по латыни "сок". Так назвали испанские завоеватели Южной Америки млечный сок гевеи, каучукового дерева. Индейцы умели пропитывать латексом ткани и делать их водонепроницаемыми. Они превращали сок гевеи в обувь и головные уборы. Европейцы стали учиться тому же. В 1791 году англичанин Самюэл Пиль взял патент на пропитку ткани каучуком "в натуральном жидком состоянии". По сути, он запатентовал способ, подсмотренный у индейцев Южной Америки. Это был первый патент, в котором упоминался латекс. Латекс - это коллоидная система состоящая из двух основных компонентов - воды и натурального каучука. Если смотреть на разбавленный латекс в микроскоп с тысячекратным увеличением, то можно увидеть мечущиеся в воде частицы. Размер самой большой из них достигает 5 микрон, самой маленькой - меньше микрона. В литре латекса больше 200 миллиардов таких частиц. Правда, есть еще один очень важный компонент - белки из сока гевеи. Они образуют на капельках каучука белковую оболочку, которая не позволяет частичкам слипаться и поддерживает устойчивость коллоидной системы. Долго время латекс рассматривали лишь как источник натурального каучука. Новая жизнь латекса началась тогда, когда в середине прошлого века в обиход вошел синтетический каучук. На его основе научились делать синтетический каучук, а из него - множество полезных вещей.


16. Неорганические полимеры

Круг веществ, которые по своему строению могут быть отнесены к высокомолекулярным соединениям, все время расширяется. Еще недавно считалось, что свойством образовывать цепи полимерных молекул обладает только углерод. Но оказалось, что гомоцепные полимеры, молекулы которых составлены из атомов одного и того же элемента, образуют также кремний, бор, фосфор, сера, сурьма, мышьяк, теллур, висмут, олово и полоний. Полимеры - это не только игрушки, ручки, ткани, корпуса бытовой техники, лаки и краски, но и горные массивы, бетонные конструкции, алмазные резцы и гранатовые браслеты. Сегодня число известных неорганических высокомолекулярных соединений составляет несколько тысяч. Это главным образом природные соединения, от речного песка до алмаза. Но в арсенал современной науки и техники уже вошли и некоторые синтетические неорганические полимеры.


18. Пауки и паутина

Жил в начале XVIII века человек, который связал себе пару чулок и перчатки из паутинных нитей. Он даже пытался разводить пауков вместо шелковичных червей. Но из этой затеи ничего не вышло. Пауки не могут работать непрерывно, как ткацкие станки. А кроме того они не могут жить вместе, просто поедают друг друга. Недаром говорят - "Как пауки в банке". А между тем паучий шелк - уникально белковое волокно, прочное, тягучее. Изучение паутины может принести большую пользу, если человек научиться воспроизводить процесс, который с легкостью выполняет паук. Сегодня российские ученые уже выделили из генома паука гены, ответственные за выработку белков, из которых строится паутина. Удалось даже встроить эти гены в дрожжи и растения и получить паучий белок, из которого можно вытягивать волокна. Но в 60-х годах прошлого века эта история только начиналась. И поначалу ученые хотели досконально выяснить, что же такое паучий шелк и как пауки вырабатывают паутину.


Всего документов: 33

Показывать ресурсов на странице 

Упорядочить по 


Поддержка ресурса